Published on April 13, 2018 by Bellona Europa
Cement production accounts for around 5% of global CO2 emissionsCredit: Thinkstock
Tackling climate change does not only involve drastically reducing greenhouse gas (GHG) emissions from the energy supply sector or accelerating electro-mobility. Obligation for reductions of CO2emissions also lies in various energy- and CO2 intensive industrial processes such as cement, steel and chemicals.
水泥產量約佔全球二氧化碳排放量的5% 信用:Thinkstock
應對氣候變化不僅涉及大幅減少能源供應部門的溫室氣體(GHG)排放或加速電動遷移。 減少二氧化碳排放的義務還在於各種能源和二氧化碳密集型工業過程,如水泥,鋼鐵和化學品。
Recent studies looking at cement production, which accounts for around 5% of global CO2 emissions (ECA, 2018), show that costs associated with deep reductions in CO2 emissions from the sector will not significantly impact the final cost of buildings or renovation. One such study has shown that production costs for a residential building only increased by 1% when using zero carbon cement. The story is similar in the steel industry.
最近的研究表明,佔全球二氧化碳排放量約5%的水泥生產(ECA,2018年)顯示,與該行業二氧化碳排放量大幅減少相關的成本不會顯著影響建築物或翻新的最終成本。 其中一項研究表明,使用零碳水泥時,住宅建築的生產成本僅增加1%。這個故事在鋼鐵行業類似。
最近的研究表明,佔全球二氧化碳排放量約5%的水泥生產(ECA,2018年)顯示,與該行業二氧化碳排放量大幅減少相關的成本不會顯著影響建築物或翻新的最終成本。 其中一項研究表明,使用零碳水泥時,住宅建築的生產成本僅增加1%。這個故事在鋼鐵行業類似。
Cement is the primary component of concrete, a substance used virtually all around the globe in construction and civil engineering projects we use every day. In this respect, cement and cement production are linked closely to the global economy. Cement production is emission intensive with CO2 released not only from fuel use but from the chemical production process. These are known as process emissions and make up 60% of the sectors climate impact. Today, production of one tonne of cement will result in nearly one tonne of CO2 emitted.
Opportunities to mitigate CO2 emissions from the cement production can include the use of less carbon-intensive fuels (i.e. biomass, waste), which would reduce overall cement emissions by 18-24%. However, for traditional cement production CO2 emissions can only be substantially reduced with carbon capture and storage (CCS).
水泥是混凝土的主要組成部分,這種物質幾乎在全球範圍內用於我們每天使用的建築和土木工程項目。 在這方面,水泥和水泥生產與全球經濟密切相關。 水泥生產是排放密集型的,二氧化碳不僅從燃料使用中釋放,而且從化學生產過程中釋放出來。 這些被稱為過程排放,佔氣候影響的60%。 今天,生產一噸水泥將導致近一噸的二氧化碳排放量。
緩解水泥生產中二氧化碳排放的機會可以包括使用碳密集度較低的燃料(即生物質,廢物),從而將水泥總體排放量減少18-24%。 然而,對於傳統水泥生產而言,二氧化碳排放量只能通過碳捕集和封存(CCS)大幅降低。
為了限制氣候變化的影響,二氧化碳的排放量必須在諸如水泥等重度排放的行業中減少。 生產具有非常低氣候影響的水泥將需要額外的製造工藝,因此,生產成本可能會增加。 研究表明,未來氣候中性水泥估計比現在的氣候密集型水泥貴(約70%-95%)(UNT,2018年)。 儘管如此,考慮到水泥和混凝土往往只佔建築和其他土木工程項目總生產成本的一小部分,最終的增長將是氣候可持續建設可能很小。 Rootzen和Johnsson(2016)假設水泥成本翻番,估計使用零碳混凝土的平均住宅建築面積將增加1%至最終成本。
作為一個社會,開始建設和改造氣候友好的建築投入物是可以承受的。 我們需要低碳住宅,商業建築和基礎設施,成為我們低碳世界的一部分。
緩解水泥生產中二氧化碳排放的機會可以包括使用碳密集度較低的燃料(即生物質,廢物),從而將水泥總體排放量減少18-24%。 然而,對於傳統水泥生產而言,二氧化碳排放量只能通過碳捕集和封存(CCS)大幅降低。
為了限制氣候變化的影響,二氧化碳的排放量必須在諸如水泥等重度排放的行業中減少。 生產具有非常低氣候影響的水泥將需要額外的製造工藝,因此,生產成本可能會增加。 研究表明,未來氣候中性水泥估計比現在的氣候密集型水泥貴(約70%-95%)(UNT,2018年)。 儘管如此,考慮到水泥和混凝土往往只佔建築和其他土木工程項目總生產成本的一小部分,最終的增長將是氣候可持續建設可能很小。 Rootzen和Johnsson(2016)假設水泥成本翻番,估計使用零碳混凝土的平均住宅建築面積將增加1%至最終成本。
作為一個社會,開始建設和改造氣候友好的建築投入物是可以承受的。 我們需要低碳住宅,商業建築和基礎設施,成為我們低碳世界的一部分。
To limit the effects of climate change CO2 emissions will have to be reduced in emissions-heavy industries such as cement. Producing cement with very low climate impact will require additional manufacturing processes, consequently, the production costs are likely to increase. Research shows that in the future climate-neutral cement is estimated to be about 70%-95% more expensive than today’s climate intensive cement (UNT, 2018). Nevertheless, given that cement and concrete tend to represent only a small fraction of the total production costs of buildings and other civil engineering projects, the final increases would be climate sustainable build could be small. Rootzen and Johnsson (2016), who assume a doubling of the cement cost, estimate that an average residential building using zero carbon concrete would add in region of 1% to the final cost.
As a society it is affordable to begin building and renovating with construction inputs that are climate friendly. We need low-carbon houses, commercial buildings and infrastructure to be a part of our low carbon world.
Sources:
Rootzen, J. & Johnsson, F. (2016). Managing the costs of CO2 abatement in the cement industry. Climate Policy. Available at: https://www.tandfonline.com/doi/abs/10.1080/14693062.2016.1191007?journalCode=tcpo20
Rootzen, J. & Johnsson, F. (2016b). Paying the full price of steel – Perspectives on the cost of reducing carbon dioxide emissions from the steel industry. Energy Policy. (98). p.459-469. Available at: https://www.sciencedirect.com/science/article/pii/S0301421516304876
ECA. (2018). The role of cement in the 2050 low carbon economy. The European Cement Association. Available at: http://lowcarboneconomy.cembureau.eu/uploads/Modules/MCMedias/1380546575335/cembureau—executive-summary.pdf
UNT. (2018). Gör betongen klimatneutral. Available at: http://www.unt.se/asikt/debatt/gor-betongen-klimatneutral-4872542.aspx
source:http://bellona.org/news/ccs/2018-04-building-with-low-carbon-cement-is-affordabl
Rootzen, J. & Johnsson, F. (2016). Managing the costs of CO2 abatement in the cement industry. Climate Policy. Available at: https://www.tandfonline.com/doi/abs/10.1080/14693062.2016.1191007?journalCode=tcpo20
Rootzen, J. & Johnsson, F. (2016b). Paying the full price of steel – Perspectives on the cost of reducing carbon dioxide emissions from the steel industry. Energy Policy. (98). p.459-469. Available at: https://www.sciencedirect.com/science/article/pii/S0301421516304876
ECA. (2018). The role of cement in the 2050 low carbon economy. The European Cement Association. Available at: http://lowcarboneconomy.cembureau.eu/uploads/Modules/MCMedias/1380546575335/cembureau—executive-summary.pdf
UNT. (2018). Gör betongen klimatneutral. Available at: http://www.unt.se/asikt/debatt/gor-betongen-klimatneutral-4872542.aspx
source:http://bellona.org/news/ccs/2018-04-building-with-low-carbon-cement-is-affordabl
沒有留言:
張貼留言